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By Paul M. Chung and Aemer D. Anderson

SUMMARY

The heat transfer due to catalytic recombination of a partially

dissociated diatomic gas along the surfaces of two-dimensional and

axisymmetric bodies with finite catalytic efficiencies is studied ana-

lytically. An integral method is employed resulting in simple yet

relatively complete solutions for the particular configurations
considered.

A closed form solution is derived which enables one to calculate

atom mass-fraction distribution, therefore catalytic heat transfer dis-

tribution_ along the surface of a flat plate in frozen compressible flow

with and without transpiration.

Numerical calculations are made to determine the atom mass-fraction

distribution along an axisymmetric conical body with spherical nose in

frozen hypersonic compressible flow. A simple solution based on a local

similarity concept is found to be in good agreement with these numerical

calculations. The conditions are given for which the local similarity

solution is expected to be satisfactory.

The limitations on the practical application of the analysis to the

flight of the blunt bodies in the atmosphere are discussed. The use of

boundary-layer theory and the assumption of frozen flow restrict appli-

cation of the analysis to altitudes between about 150,000 and 250,000
feet.

INTRODUCTION

Surface reaction, long a subject of interest in the chemical

industry, has become important in aerodynamics in connection with high

altitude hypersonic flight. When the flight conditions are such that
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the flow of dissociated air past the body is almost chemically frozen,

heat transfer to the body is strongly influenced by the amount of cata-

lytic recombination at the wall. With noncatslytic walls, the chemical

energy of the flow does not contribute to the heat transfer at all and,

conversely, with highly catalytic walls the h_at transfer is approxi-

mately the same as that which occurs across a_ equilibrium boundary

layer. Thus, when the air is completely dissociated the heat transfer

may vary with the catalytic activity of the w_ll from about 2_ percent

to about i00 percent of equilibrium heat tran_;fer.

Boundary-layer theoz7 was first applied :o surface chemical reaction

problems by Chambr$ and Acrivos (ref. i). Since then many people, such
•

as Chambre, Acrlvos, Rosner, Goulard, Anderso:1, and Chung (refs. 2

through 8) have studied the problem for variols applications using dif-

ferent approaches. The specific solutions obtained are for

i. The incompressible flow over a flat plate upon which an arbi-

trary order chemical reaction I occurs (refs. i through 5).

2. The compressible flow over a flat plate upon which first-order

chemical reaction takes place (ref. 8).

3 • The first-order chemical reaction a_ the stagnation point in a

dissociated hypersonic flow without mass transfer (ref. 6), and

with mass transfer (ref. 7).

In this paper, an integral method will _e used to obtain catalytic

heat-transfer predictions for (i) a flat pla_e in frozen compressible

flow with and without transpiration and (2) _n axisymmetric conical body

with a spherical nose in frozen hypersonic cDmpressible flow without

transpiration.

The effect of mass transfer is includeC in the present analysis

because it may be used for cooling purposes in a hypersonic flight and
also because there is mass transfer at the surface when the surface

participates in the chemical reaction.
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SYMBOLS

B1,B2 constants for equation (51) given in table 3 page 16

Ow,0_w,o_ °'2

Pe, olZe _o/'

iThe reaction rate at the wall is an erbitrary function of the

surface concentration of the reactant.
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C

c

Cp

D

F

FI

F2

G

h

Sh o

Jl_w

Kl

Ka

k

kw

L

M

i%

m

P

parameter defined by equation (9)

mass fraction

frozen specific heat at constant pressure

coefficient of binary diffusion

Blasius stream function used in equation (63)

momentum integral defined by equation (39)

concentration integral defined by equation (41)

reaction parameter defined by equation (49)

G

frozen total enthalpy defined by equation (6)

heat of recombination

mass flux of atoms to the wall

parameter defined by equation (53)

KI

parameter defined by equation (54)

parameter defined by equation (55)

frozen thermal conductivity of gas

specific rate constant for surface recombination

reference length (see fig. i)

molecular weight

free-stream Mach number

c l

cl_e

pressure

Pr Prandtl number
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qc

qd

Re

Sc

T

t

U

U

V

V

X

X

Y

Z

Z

total heat-transfer rate toward the wall per unit area

convective heat-tramsfer rate toward the wall per unit area

heat transfer rate per unit area by ato_ recombination at the
surface

universal gas constant

distance from the axis of symmetry to a point on the surface

(see fig. i)

Reynolds number_ pu_L

streamwise independent variable defined by equation (7)

Schmidt number,

absolute temperature

independent variable defined by equaticn (8)

u_u_= ___Y
Ue _t

x component of velocity

-_

y component of velocity

x_
L

streamwise distance along the surface

distance momal to surface

mass rate of collision of atoms with t_e wall

variable defined by equation (65)

du e

dx

transpiration parameter defined by equation (38)
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h

e

v

p

d

A

X

E

e

i

surface catalytic efficiency

boundary-layer thickness

modified boundary-layer thickness defined by equation (36)

0 for two-dimensional bodiesfor axisymmetric bodies

t__ defined by equation (36)
6t

nose angle

parameter defined by equation (37)

dynamic viscosity

kinematic viscosity

dummy variable

density

mw = C!,w

shape factor defined by equation (_0)

shock layer thickness

equilibrium mole fractions

stream function defined by equations (14) and (15)

parameter defined by equation (81)

Subscripts

equilibrium

edge of boundary layer

ith species

5



m

w

o

l

2

Oo

mixture

wall

leading edge of flat plate or stagnation point of sphere

atoms

molecules

free stream

Superscript

differentiation with respect to s except for equation (63)
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SIMPLIFICATION OF BOUNDARY-LAY_ R EQUATIONS

The classical laminar boundary-layer th(ory is used in the present

paper. The fluid is considered to be a partially dissociated diatomic

gas of constant Schmidt number and it is assumed to be frozen in this

state throughout the entire flow field. The actual range of flight con-

ditions in the atmosphere for which these simplifications are valid will

be discussed later.

The equation of state for a partially dl.ssociated diatomic gas is:

R (I+oDpT
p : (1)

where the term (l+cl) is known as the compre{sibility factor. For two-

dimensional and axisymmetric bodies the boundary-layer conservation

equations are:

Mass

. : o (2)
cy

Momentum

011 _ + pv _ =- _ -
:bX i_y Oy [))/ dx

(3)



7

A
I,
L_

2

5

Frozen total energy

Ou _ + Ov -- - + -
,_-_x _y ,_,y ,_/ --

Species

where

(9)

h = ci cp,id + _ (6)
i

Considerable simplification of the conservation equations results when

a new set of independent variables is defined as

s = u er2e _x (7 )

v O

_oy P dy (8)t = Ue rc 0o,e

where

"c= Oe,o_e,o= \Oe,o_e,o = C \pe,o_-'---J,oS

Following references 9 and i0 we assume

SOw_o_w/o_ °'2

C = \0e,oPe,ol (i0)

and

Oeke Pe

Pe,oPe_o Po
(ii)

Now _ is a function of x alone. It was shown in references 9 and I0

that these assumptions (eqs° (i0) and (ii)) affect the solution for heat

transfer to an infinitely catalytic wall or a totally noncatalytic wall

by less than i0 percent. It might be expected that discrepancies for

intermediate values of catalytic activity will be as small.



Transformation of the conservation equations to the set of
independent variables s and t is accomplished by meansof the following
relations :

= _Uer2e _ + 0___t__O (12)
OX _S _x _t

3"-_- Pe,o _t

A stream function is defined to satisfy the nass conservation equation

as

O_ (14)
Purc = Po,e b'-_

:)Y (15)
Pyre : -O°'e b--x

Transformed to the s-t plane, equations (14) and (15) become

Ue _t

pv = - 0°'e Ue r2£ _--Y+ -
re \- _s Jx _t/

(17)

New dependent variables are defined as

bt

v : - (19)
_s

Now with the use of equations (7) through (]9), the conservation equa-

tions (2) through (5) can be transformed to somewhat resemble the

familiar incompressible boundary-layer equations as follows:

_ass

(2o)
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Momentum

_U _U _2U+U.-- + V = _
os _ _o,e bt2 1 due <_e _ U2) (21)Ue ds

Frozen total energy

(22)

Species

bci 3ci _ 32ci
U_-s +v _-[-= sc _t-7-

(23)

The last term in equation (21) is zero for a flat plate without

pressure gradient. Also_ according to reference 9_ it may be neglected

in a highly cooled hypersonic boundary layer over a blunt body. Equa-

tion (21) therefore becomes for a flat plate or a highly cooled hyper-

sonic blunt body

bu _u _2u (24)
U_ s + V -- =St V°'e _t m

Equation (23) may be written, for the diatomic gas under consideration

u bcl bcz _ 52cz+ v -- = _ (25)
5 s at Sc _t 2

C2 : 1 - cI (26)

Note that as a consequence of the assumption of equation (i0) the

momentum and species conservation equations are no longer coupled to the

energy equation; therefore, equation (22) need not be treated here since

its solution may be found elsewhere. Equations (20), (24), and (25) are

in the form of the familiar incompressible flat plate boundary-layer

equations and are now amenable to solutions. Now it is seen that the

pertinent original boundary-layer equations (2), (3), and (5) are simpli-

fied to equations (20), (24), and (25). The boundary conditions on these

equations are as follows:
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at t = O:

at t = _."

U=O, V= VW9

Oc____l= Ooze Sc Vwcl_ w +

_t _o,e

Sc

_o _e_uer _ Jl_w

U = i _ c I = cl_ e

(27)

at s = O:

_s _<_t>_ Bounded , _s _> _ Bounded (28)

The boundary conditions are not yet compl,_te since J1.w is not

known. The term Jz_w is the mass flux of atoms to the wall and is
obtained from a consmderation of the chemical kinetics of the surface

reaction. Therefore, we shall include in the _ubsequent section a brief

discussion of the surface chemical reaction kinetics before going into

the actual solution of the equations.

A
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CHEMICAL KINETICS OF THE CATALYTIC SURFACE REACTION

More comprehensive treatments of the subject about to be discussed

may be found in references ii and 12.

It is generally accepted that the catal/ic recombination of disso-

ciated air on surfaces at temperatures lower 1,han 2000 ° K and at pressures

above 10 -4 atm is a first-order process proce_ding only toward the neg-

ligibly small equilibrium atom concentration. This discussion is limited
to such a reaction.

The microscopic reaction rate_ which is _ function of the rate of

collision with the wall_ may be obtained as f_llows for a dissociated

diatomic gas: Let 7X2 be the probability of an atom recombining upon

striking the wall. The equilibrium mole fraction of the molecules, _2_

is unity at the surface temperatures and pressures of interest here.

The factor 7 is commonly referred to as the "catalytic efficiency."

The mass rate of recombination may then be wYitten

Jl,w = 7Z (29)
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where Z is the mass rate of collision of atoms with the wall and is,

for a Maxwellian distribution,

(3o)

then

(31)

In engineering work, including the present analysis, the reaction
rate is often written

Jz,w = kwOwCl,w = 2kw _w \l+cl,wj

The specific catalytic rate constant, kw_ is related to the catalytic

efficiency by the expression

72 Mi kw (33)7 = RT---_

The magnitude and temperature dependency of kw are not well

known for most surfaces; however, metallic and metallic oxide surfaces

have much higher efficiencies than nonmetallic surfaces. For instance_

at room temperature_ kw for a metallic oxide is about i0 ft/sec, whereas

kw for pyrex is about 0.i ft/sec (see ref. 6). There are also possi-

bilities of '_oisoning" surfaces to reduce their catalytic efficiency.

Reference 13 reported a substantial reduction of the catalytic efficiency

of metallic surfaces upon application of iodine coatings.

REDUCTION OF GENERAL EQUATIONS TO AN ORDINARY DIFFERENTIAL EQUATION

In this section, the partial differential equations (20), (24), and

(25) with the boundary conditions of (27) will be reduced to an ordinary

differential equation by the use of an integral method described in ref-
erence 14.

The diffusion boundary layer is assumed to have the thickness of the

momentum boundary layer, an assumption which is believed to be valid for

Sc in the order of i according to reference 14. Equations (24) and

(25) are integrated across the boundary layer with the aid of equation

(20). The resulting integro-differential equations are
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where

\o_/w

w

t _o y(p/pe'°_y)

_o (P/Pe,odY)

6t a
h-

Veto

(34)

(35)

(36)

(37)

A
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Vw_t

Veto

(38)

1

FI = _o u(l-u)_n
(39)

el

C1_e

(_o)

!

Fm = _o U(1-m) d'q

and the prime denotes differentiation with re3pect to

conditions become, with the aid of equation (_2)_

at _ = O:

U= 0

V =Vw

pkw Sc 6t
B_m= FScm+

_ _e, o--CuerC

m

(41)

s. The boundary
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at _=i

U---m:l

hU 8m
e- = =0

}
In order to solve equations (34) and (35), the form of U and m

must first be assumed. Fourth and fifth degree polynomials in

chosen to represent the profiles for U and m, respectively.

Thus:
4

U = _ anq n

II=O

(43)

profiles

are

5

m = > bnT] n
A_J

n--o

(45)

The coefficients an and bn are obtained by satisfying a sufficient

number of boundary conditions at _ = 0 and q = i. Equation (44) must

satisfy five boundary conditions. One coefficient in equation (45) is

left to be determined as the solution of equation (35); therefore, only

five boundary conditions are needed. These boundary conditions are

those from equations (42) and (43)_ and those obtained by satisfying

equations (24) and (25) at _ = 0 and 1.0. The particular choice of

profiles, equations (44) and (45), is justified a posteriori by the

close agreement of the present solutions with available exact solutions

as will be shown later.

Consider the momentum equation (34). It is well known that an

affine solution of the momentum equation exists which satisfies the pre-

sent boundary conditions when F is constant (similarity transpiration).

This fact enables us to set F I' = O, and to rewrite equation (34) as

(ou/ou)_ + r
X' = = constant (46)

F_/2

Therefore:

= X's (47)
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The catalytic boundary condition described in (42) may be written,

with the aid of equations (i), (7), (9), and (47), as

(b_-_,_w = f Sc + G Sc
mw

where the reaction parameter, G, is

mw (45)
l+mw e i,e

(l+cl,e)Te' ° J Reoae
G = Tw

(49)

and the shape factor, ¢, is

1

Upon substitution of the polynomial prcfiles with appropriate

boundary conditions, the concentration integral, (41), becomes

F2 = Bl(1-mw) - B2 i,m (51)

where the constants B l and B2 depend on 7. Equation (35), with the

solution of equation (34 ) incorporated, may now be written as

A

4

2

5

where

m_4 t ----

Ks- Kemw- KI i + h_B2 S '_ + 2¢'s l+mwel,e

2 [K2 + Kl¢
(l+mwe :., e) 2

S

B_
KI = _-G Sc

D1

(9_)

(53)

B_

K2=I+_FSe
(52)

Ks = i 2 [ (55)
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It is now seen that the pertinent conservation equations are

reduced to the single equation (52).

SOLUTION FOR THE SURFACE DISTRIBUTION OF ATOM CONCENTRATION

Condition for Application of the Local

Similarity Concept

A

D

Before actually solving the equation (52), let us examine the pos-

sibility of obtaining the surface distribution of atom concentrations by

use of the local similarity concept.

In flow past a wall with a finite catalytic activity_ a concentra-

tion boundary layer develops through which atoms diffuse to recombine on

the surface. The resulting steady state atom concentration along the

wall is determined by the relative local rates of atom diffusion to the

surface and catalytic recombination at the surface. The diffusion rate

of the atoms_ for a given concentration potential, is determined by the

aerodynamics of the flow, characterized here by the momentum and diffu-

sion boundary-layer equations (24) and (25). The consumption rate of

atoms at the wall, on the other hand, is controlled by the heterogeneous

chemical reaction kinetics discussed earlier. In general_ affine solu-

tions of equation (25) can not be obtained to satisfy the catalytic

boundary condition of equation (27). This can be seen, for instance,

from the fact that the catalytic boundary condition (48) for the inte-

grated form of the diffusion equation, (3P), depends upon the variable

X explicitly through @. According to the present method of solution

characterized by the equation (35) and its boundary conditions, one would

have a similarity solution which would specify that mw be independent

of X for any body whose geometry and flow characteristics are such that

is independent of X. On the other hand_ when @ varies slowly with

X, one expects a local similarity solution, explained below, to be valid.

Here, a local similarity solution means that equation (35) is solved

locally with the boundary condition (48) applied as though it were not a

function of X_ however_ with ¢ being calculated at the point in ques-

tion. An affine solution can in this way be obtained locally for each

position along the body.

In practice, one could make use of already existing affine solutions

for a thermal boundary layer over an isothermal flat plate (ref. 15 for

instance). This problem is analogous to the present one when the atom

concentration at the wall is independent of X. The affine solution

yields a relationship between (_m/_) w and mw for a locality which is

then solved simultaneously with equation (45) for mw(X).
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The hypersonic pressure distribution and equilibrium heat-transfer
distribution are already knownfor many interesting body shapes. With
this information_ the validity of the local similarity solution can be
qualitatively checked without performing any calculations. The simple
relationship given in reference 15, for instance, describes quite accu-
rately the equilibrium heat transfer to two-dimensional and axisymmetric
bodies. The function % appears, essentially, in the equilibrium heat-
transfer equation of reference 15 from which _{eobtain

Pe i (56)
qw,o;E Po¢

Equation (56) showsthat if the available pressure and equilibrium heat-
transfer curves for a particular two-dimensional or axisymmetric body
are found to be similar, then the function _ for the body is a weak
function of X. For such a body the distribution of atom concentration
along the wall, therefore the catalytic heat transfer, maybe obtained
simply by using the local similarity concept.

The differential equation (52) will be _olved in the following
sections for two typical body geometries; flCt plate and axisymmetric
cone with spherical nose. A solution will be obtained in closed form
for the flat plate. The solution for the axisymmetric body will show
that the local similarity concept provides s useful approximation.

The universal constants involved in equation (52) are calculated for
the three transpiration rates_ f = 0, 1.0, _md2.0_ and are given below.

f

0

1.0

2.0

_' Bl Ba(f(_r Sc = 0.72)

34.09 0.2429 0.06270

45.64 .2323 .06457
_ L

58.51 .22L4 .06679

A
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Flat Plate With Similarity Transpiration

The body studied in this section is shown in figure l(a). For two-

dimensional flow without pressure gradient_ the streamwise variable
becomes

S = CLueX (57)
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also

 =J7

Equation (52) becomes

dm w

dX

2 2KS - K2m_- + _'B2 $c

£

X
2 K2 + _l+mwCz--e) s

my

l+mwC z;e
(59)

Equation (59) is nonlinear and the general solution cannot be

obtained analytically. There are_ however_ a few limiting cases for

which the equation can be integrated readily_ and these cases will be

investigated first. They are:

i. When the surface is infinitely catalytic.

2. When the surface is totally noncatalytic.

3. When the compressibility factor at the wall, (l+mwCl,e) , is
sufficiently near i.

For the first case it is obvious that mw = 0 for all X. When the wall

is noncatalytic, the similarity solution of equation (59) is

K_ (d0)
mw = K%

When the compressibility factor at the wall, (l+mwcl_e) _ is sufficiently
near i, equation (59) simplifies to a first-order linear equation

2 K_X
dmw 2 + + h' B2 S K_
d----X+ ' 1 mw= "i -

2(_2+x_x _) x 2(x2+_× _)x
(dl)

The closed solution to this equation which satisfies the boundary con-

ditions that m w is finite at X = 0 is

i - + X X'B 2 S

• w = _ _ (_2)
K2 1

I+X'B_ sd _ x
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A limiting process, letting X _ O_ shows thai mw,o = K_K2, an expected
result since at X = 0 there is no time for reaction. Therefore the

inert wall solution, equation (60), must be w_lid.

More exact solutions of the limiting cas_s corresponding to solu-

tions (60) and (62) are found elsewhere and w_ shall compare these solu-

tions here. The exact solution for noncataly_ic wall with similarity

transpiration can be derived from equation (i)) of reference 7 as

i
mw = (63)

1- _ _CjoLF"(o)_J

The transpiration rates are related by:

Vw _ 2f (6_)

For Fw = -0.5 (separation occurs at Fw = .2385) and Sc = 0.72, the

approximate result according to equation (60, is within _ percent of the

exact solution. The value of the integral i:l equation (63) was obtained

from reference 16.

Now for the case where the compressibilLty factor at the wall is

sufficiently near i, F = 0, and (l+cl,e)Te/_ Tw = i, equation (62)
gives the solution to the problem treated in references i, 4, and 5,

where compressibility and transpiration were not taken into account.

terms of the parameter z used in reference I_

In

Z

kwL Sc 0e
Re 2Sc _JX 2 (65)

0.339_e

the present solution for Sc = 0.72 is

1 - (l+o.a58z) -:_'3°
mw = (66)

1.053z

This solution, equation (66), is compared wLth other known solutions in

figure 2. For Sc = 0.72, a good agreement is shown between the present

solution and those of references i and 5- _quation (66) was presented

in reference 8 by the present authors. Slight differences in the con-

stants are due to the use of a different ozder polynomial approximation

in the velocity profile.

A
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The complete solution of equation (_9) is obtained numerically by

the use of an IBM 704 digital computer. The numerical solutions were

obtained for Sc = 0.72 and several combinations of K l and cl_ e at

transpiration rates of F = O, 1.0, and 2.0. A study of these numerical

results revealed that for each value of F_ the solutions were congruent

with equation (62) when _ = mw/mw,o was plotted versus
XiXZ/S/K2(l+cl.e)_. Therefore, the function K_XI/S/K 2 in equation (62)

" 1/2
was replaced by KIX /K2(l+cl,e) and the following semiempirical

closed form solution was obtained for all compressibility factors.

[ _ )KIX 2 ] _'B2 SC
i - i + K2"l+cl, e'_

= mw = (67)
i

m_, o

+ X'B2 Sc K2(l-_+C£,e) g

Figure 3 shows the close correlation between equation (67) and the

results of the numerical solutions of equation (}9) for the three trans-

piration rates.

It is seen in equation (67) that the general solution depends on

the two parameters, KiXl/S/K2(l+cl,e) _ and 2/_'B2 Sc only.

Once the atom wall concentration is known, the catalytic heat trans-

fer, that is, the heat transfer due to diffusion; qd;w; is obtained as
follows:

qd, = l°wkwcl, wAh°: (kwpM2"_ Ah° S mwel,e %w k Rmw / kl+mwc 1, el
(68)

the total heat transfer is given by

qw = qd,w + qc,w (69)

where qc_w is the heat transfer due to ordinary convection_ values of
which can be obtained elsewhere_ such as in references 7 and 9-

Axisymmetric Conical Body With Spherical Nose

In this section, equation (_2) will be first solved numerically

for the axisymmetric conical body with spherical nose shown in fig-

ure l(b). An approximate solution will also be obtained by the use of

the local similarity concept and the two solutions will be compared.
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For simplicity, the following approximations used in reference 15
are used here for the inviscid flow properties.

--P = cos2X , ue = u _oX for X <=e (70)Po

P cos2e ue u _o6 for X > @
Po

The streamwise variable s becomes for the body

2s = CU_o Ls X sin2X cos2X dX

s = CU_oL X sin2X cos2X dX

+ 0 cos2OFUO [sin 0 + (X-O)cos t_] 2

also the function _ becomes

Xxsin2Xcos2X
¢ _ _oX2sin2X

(71

for X =<e (7_)

<
for X ----6

for X > 0 (73)

(7_)

A
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(_ J$o
X sin2X cos2X dX + @ C0S2@ [sin @ + (X-@)cos e]2dX

poem[sin @ + (X-e)cos e]2

for X _ e

Now to remove a flight condition from the shape factor let

_=JTo®

and also define

_JTjoB_ _ B_

(75)

(76)

(77)
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Nowwith the aid of equations (70) through (77), equation (52) becomes

A

2

--- _ i _2sin X + X cos X) mwi - mw - 2Kl_ i + h'B2 Sc sin X cosmi_ l+mwCl;e

L (l+mwCl,e)2J cosSX

dmw i - mw- 2KI_ + _'B2 Sc

for x _ e (78)

[28 _ mw
cos _[sin @ + (X-0)cos e] l+mwCz_e

5 dX

_i_ ] _%
2 i + (l+mwel, e)e cosa@

for X _ e (79)

The solution of equation (78) for X = 0 (stagnation point) can be

obtained from the general local similarity solution of equation (35).

This solution is for ? = 0

-(_ + 1 - c I e) + 7(_ + i - Cl,e) 2 + 4ci, e
mw = _ (8o)

2CIje

where

= KI + h'B2 Sc

The value of _ at the stagnation point is found by noting

X_O

Equation (80) was found to yield stagnation point values which check

within 5 percent of the exact solution given in reference 6.

For the region downstream of the stagnation point equations (78)

and (79) were integrated numerically for Sc = 0.72 and several values

of _ and Cl,e, and with @ equal to _0 ° and 70 ° . These results are
shown in figure 4. The solutions for _ = 0 and _ = _ represent the

two extremes of catalytic activity.
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Nowlet us examine the possibility of usi_tg the local similarity
solution eve<_wherealong the body. In order ;o estimate the accuracy

of the local similarity solution, the hypersonic pressure and equilibrium

heat-transfer distributions (obtained from ref. 15) are shown below for

the body in question.

L
\

\
\
\
\
\
\

8 =50 °

8=70 °

I I I I , I I I
•8 I. 2 1.6 2.0 2.4 2.8 3.2

X

Sketch (a)

Since the curves are quite alike except alonc the conical afterbody for

e = 50 ° , equation (80) is expected to be gencrally quite satisfactory
in the determination of the atom wall concentration.

From figure 4 we see that the variation of m w with X becomes

less pronounced as G approaches either of lhe two extremes. The error

introduced by a local similarity assumption _hould therefore be largest

at intermediate values of 9, and if its use can be justified there, it
should be valid for all values of _.

Figure 5 shows the catalytic heat trans:'er based on the numerical

solution and the local similarity solution f()r an intermediate value of

the reaction parameter G = 5.0 and cz, e = 1.0. The agreement between
the two results is strikingly good_ with som_ deviation along the conical

afterbody for @ = 50 ° as expected. It seems that the local similarity

solution is quite adequate for the calculati:)n of catalytic heat transfer

to this body.
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APPLICATION TO HYPERSONIC FLIGHT

Altitude Range of Application

A

4

2

5

As flight altitude is increased_ the boundary layer surrounding a

hypersonic vehicle passes through a regime in which homogeneous recom-

bination is significant into one where this reaction is frozen and,

finally_ with very low density, into a regime where the classical

boundary-layer theory is no longer valid. The present analysis is

applicable in the intermediate regime_ that of near frozen boundary-

layer flow_ where catalytic recombination is probably most significant

in the calculation of heat transfer.

Heat transfer to blunt bodies with nonequilibrium boundary layers

was considered in reference 17, where it is shown that the boundary

layer at the stagnation point becomes practically frozen at about

200_000 feet altitude, depending, of course_ on the nose radius and wall

temperature. Also, for a particular nose radius and wall temperature,

the boundaz 7 layer on the conical afterbody will be frozen at consider-

ably lower altitudes.

As the Reynolds number decreases with increasing altitude, the vor-

ticity in the inviscid flow generated by the bow shock becomes compar-

able to the vorticity in the boundary layer. This is called the vorti-

city interaction regime_ in which it is necessary to modify the classical

boundary-layer theory.

Reference 18 indicates that the boundary-layer cor cept is valid near

the stagnation point of a blunt body whenever Moo/R%o << p_/Po,e(5/A).

Consider a hypersonic body of i foot radius flying at an altitude of

250,000 feet. The ratio, M_/Re_ is about one order of magnitude smaller

than P_/Po_e_ which suggests that boundary-layer theory can still be
approximately applied at this altitude. The effect of vorticity inter-

action on ordinary convective heat transfer to the stagnation point was

analyzed in reference i$ for a compressible inert gas. It can be cal-

culated from this analysis that the vorticity interaction effect on heat

transfer to the stagnation point of a sphere at the altitude of 290,000

feet is to increase the heat transfer about i0 percent. Since the vor-

ticity in the boundary layer increases rapidly as the gas flows around

the body, the altitude at which the vorticity interaction effect becomes

important on the conical afterbody should be considerably higher. The

present analysis should therefore be applicable between about 200,000

feet and 250,000 feet, a range which may be extended considerably in both

directions if one is primarily interested in the conical afterbody.
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Discussion of Gas Mode]

Air, for the present flight range, is mor_ validly described as a

mixture of oxygen and nitrogen than as a singl_ diatomic gas. It is felt

however, that since the transport properties a_.e quite alike, any impor-

tant difference, as regards catalytic heat tralsfer, would be in the

reaction rates and heats of reaction.

The conservation of species equation when written independently for

oxygen and nitrogen would be identical and whel combined, would give

equation (35). Now, if kw were the same for both oxygen and nitrogen,

the combined catalytic boundary condition woul( be the same as that for

a single diatomic gas, equation (48). The assumption of equal values of

kw seems reasonable in view of the limited knowledge of heterogeneous

reaction rates (ref. 6), and is made here.

With these limitations_ equal transport p]'operties and equal values

of kw, the combined atom wall concentration, may be calculated using the

present method.

If the solution had been carried out indelendently for oxygen and

nitrogen, with the above assumptions, the reduced concentration profile

would be the same for both since the equations are identical with identi-

cal boundary conditions. The heat of recombination at the wall f_h° may

therefore, in the present analysis, be obtaine( as a weighted average

based on the atom concentrations at the boundary-layer edge.
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5

The Effect of Catalytic Activity on Hyper_ onic Heat Transfer

For a given hypersonic blunt body, the caJ_alytic heat transfer is

largely controlled by the reaction parameter (_ as can be seen from the

general equation (52). Approximate values of _ for two typical surface

materials are shown in figure 6 for the range (_f flight conditions of

interest. The calculations are for the blunt _ody shown in figure i with

a nose radius of i foot. The values of kw are taken from reference 6.

The atom diffusion rate into the wall is _pproximately proportional

to the driving potential, Cl, e - Cl, w. Theref_re, for m w = O, qd, F is
maximum and the total heat transfer would be at out the same as tha_ for

an equilibrium boundary layer. The proportion of dissociation energy

transferred to the wall will decrease with (l-llw). Now let us consider

a metallic oxide surface, which is quite highly catalytic. It is seen

from figures 4 and 6 that at lower altitudes (less than 150,O00 ft) the

total heat transfer, qw, will be about as larg_ as equilibrium heat trans-

fer. At the altitude of 250,000 feet, however the catalytic heat trans-

fer will be reduced by about 50 percent. Sinc_:_, at high speeds, as much
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as 79 percent of the total energy could be associated with dissociation,

the total heat transfer would be reduced to about 65 percent of equilib-

rium heat transfer, even for this highly catalytic surface. Any surface

material with a lower catalytic efficiency, such as pyrex, would, of

course_ reduce the heat transfer to a much lower value.

CONCLUDING REMARKS

A

4

5

The catalytic heat transfer to the surfaces of two-dimensional and

axisymmetric bodies with finite catalytic activities was analyzed.

An integral method was used to obtain catalytic heat-transfer pre-

dictions to (i) a flat plate in frozen compressible flow with and with

out transpiration and (2) an axisymmetric conical body with a spherical

nose in frozen hypersonic compressible flow without transpiration.

The solution for a flat plate was derived in closed form.

It was shown that for a body whose pressure and equilibrium heat

transfer distribution curves are similar, the catalytic heat transfer

to the body can be calculated quite accurately by the use of a simple

local similarity concept. For the axisy_mmetric conical body with spher-

ical nose, the pressure and the equilibrium heat-transfer distribution

patterns were found to be quite similar. A comparison of the catalytic

heat-transfer solution based on the simple local similarity concept with

that obtained by the numerical solutions showed that the maximum error

was in the order of 5 percent for this body.

It was shown that at high flight altitudes_ the dissociation energy

would not be recovered completely even with highly catalytic surfaces,

such as a metallic oxide. The total heat transfer, therefore, may be

considerably less than the equilibrium value for most engineering

materials.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field_ Calif., Sept. 22_ 1960
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(b) Axisymmetric cone with spherical nose

Figure i.- Physical models considered.
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